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TBC1D24, an ARF6-Interacting Protein, Is Mutated
in Familial Infantile Myoclonic Epilepsy

Antonio Falace,1 Fabia Filipello,2 Veronica La Padula,3 Nicola Vanni,1 Francesca Madia,4

Davide De Pietri Tonelli,3 Fabrizio A. de Falco,5 Pasquale Striano,1 Franca Dagna Bricarelli,4

Carlo Minetti,1 Fabio Benfenati,2,3 Anna Fassio,2,6,* and Federico Zara1,6,*

Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or meta-

bolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occur-

rence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy,

named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis.

In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of

unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of

the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family

of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation

of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite

length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation

involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyper-

excitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common

epileptic disorders.
Results and Discussion

Idiopathic epilepsies (IEs) are a group of disorders charac-

terized by recurrent seizures in the absence of detectable

brain lesions or metabolic abnormalities and affecting

about 0.4% of the general population. Epidemiological

studies highlighted the pivotal role of genetic factors in

the etiology of these conditions.1 IEs include common

disorders with a complex mode of inheritance and rare

Mendelian traits suggesting the occurrence of several

alleles with variable penetrance. The dissection of the

complex genetics underlying IEs represented so far a chal-

lenging task, and alleles conferring susceptibility to

seizures have not been identified yet. On the other hand,

the investigation of rare Mendelian traits highlighted

the critical role of genes encoding different ion channel

subunits, including voltage-gated and ligand-gated chan-

nels, and shed light into epileptogenic mechanisms

behind IEs.2,3 In addition, the identification of mutations

in LGI14 (ADLTE [MIM 600512]) and EFHC15 (EJM [MIM

254770]) in familial forms of IE underlying subtle defects

in embryonic or postnatal brain development provided

evidence that pathogenesis of IE is more composite.

In 2001, we described an autosomal-recessive early-onset

idiopathic generalized epilepsy in a large family from

Southern Italy characterized by myoclonic and generalized

tonic-clonic seizures, photosensitivity, normal neurolog-
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ical and mental development, and good response to treat-

ment (familial infantile myoclonic epilepsy, FIME [MIM

605021]) and mapped the FIME locus within a 3.4 cM

interval on chromosome 16p13.3 between markers

D16S3024 and D16S423.6,7

Toward the identification of the causative mutation, we

performed high-density SNP genotyping by pyrosequenc-

ing and refined the FIME critical region to 2 Mb between

rs35856 and rs9936111. The local Ethics Committee

approved the study and a signed informed consent was

obtained from family members participating to the

study. Haplotype analysis indicated the occurrence of two

distinct disease chromosomes suggestive of compound

heterozygous mutations and confirmed initial mapping

data (data not shown). The critical region contains 54

RefSeq genes, none of themwith a definite role in neuronal

excitability or epileptogenesis (Table S1 available online).

The systematic mutational screening of 34 genes in

two affected family members (III-1 and III-10) by Sanger

sequencing of amplified exonic sequences and flanking

intronic segments led to the identification of two com-

pound heterozygous missense mutations in TBC1D24

(c.439G>C [p.D147H]; c.1526C>T [p.A509V]) (Figures

1A and 1B). These variants are not included in the SNP

database and were not identified in 300 Italian controls.

No other candidate mutations emerged from the remain-

ing genes. We extended the mutational analysis to all
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Figure 1. Genetic Analysis of TBC1D24
(A)Pedigreeof the familywithFIMEandsegregationanalysisofTBC1D24mutations.Haplotypesareshownincoloredbars.The redandgreen
haplotypes cosegregate with c.1526C>Tand c.439G>C TBC1D24mutations, respectively. Affected patients are indicated by filled symbols.
(B) Electropherograms of c.439G>C and c.1526C>T mutations.
(C) Genomic organization and functional domains of human TBC1D24. Affected amino acids are highly conserved throughout evolution.
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Figure 2. Expression Analysis of TBC1D24
(A) RT-PCR showing the expression profile of TBC1D24 in various
human tissues. TBC1D24 is preferentially expressed in brain. Data
are represented as means 5 SEM.
(B) RNA in situ hybridization on brain sections from 12-week-old
mouse shows that Tbc1d24 is abundantly expressed in the
neocortex (Cx) and hippocampus (Hp).
(C) High-magnification image of the cerebral cortex revealed
a higher expression of Tbc1d24 in deep cortical layers (V/VI)
compared to superficial layers (II-III).
(D) High-magnification image of hippocampus shows the highest
expression of Tbc1d24 in the CA3 region compared to the CA1
region and dentate gyrus (DG). Hb, hindbrain.
available family members and confirmed that mutations

segregate from different branches and that all patients

affected by FIME are compound heterozygous carriers.

Moreover, none of the unaffected family members carry

both mutations. TBC1D24 encodes for a putative protein

of 553 amino acids of unknown function (accession IDs:

NM_020705.1 and NP_065756). BLASTP alignments indi-

cated that TBC1D24 has no significant homology with

other human proteins but is evolutionary conserved till

lower vertebrates (HomoloGene:27469).

TBC1D24 is characterized by a Tre2/Bub2/Cdc16 (TBC)

domain, shared by Rab GTPase-activating proteins (Rab-

GAPs) and a TLDc domain with no reported putative func-

tion, despite occurring in four additional human genes.8,9

The identified mutations affect two highly conserved

amino acids in TBC (D147H) and TLDc (A509V) domains

(Figure 1C). The combination of TBC and TLDc domains

is a unique feature among human proteins but it is found

in about 30 proteins of different species.

The expression profile of TBC1D24 was evaluated in

various human tissues by real-time PCR assay on an ABI

Prism 7500 Real-Time PCR Systems (Applied Biosystems)

with a TaqManMGB probe (assay ID; Hs00324855_m1,

Applied Biosystems) specific for human TBC1D24. Each

assay was carried out in triplicate, normalized to an endog-

enous reference (GAPDH [MIM 138400]), and expressed

relative to a calibrator sample as previously described.10

TBC1D24 is expressed in several human tissues, with the

highest level of expression in the brain (Figure 2A). To

further analyze the distribution of TBC1D24 within the

brain, RNA in situ hybridization was performed on coronal

sections from 12-week-old mouse brain via an anti-digox-

ygenin Tbc1d24 antisense oligonucleotide probe, as previ-

ously described.11 The Tbc1d24 signal was mainly detected

at the level of the cortex and the hippocampus (Figure 2B;

Figure S1). In the cerebral cortex, Tbc1d24 was expressed

through all layers, although more abundantly in layers

V/VI (Figure 2C); in the hippocampus, Tbc1d24 was mark-

edly expressed in the CA3 region and to a lower extent in

the CA1 region and dentate gyrus (Figure 2D). Moreover,

we evaluated the cortical expression of Tbc1d24 at different

embryonic stages (days 15.5 and 18.5) and found that

its expression increased during cortical development,

particularly in the internal part of the cortical plate and

in the subventricular zone (Figure S2).

Sequence analysis showed that the TBC domain of

TBC1D24 lacks critical residues conferring GAP properties

to most RabGAPs, particularly the ‘‘arginine finger’’ at

position 56 of the TBC domain consensus sequence

(PF00566).12 Three human TBC proteins missing the argi-

nine finger have been investigated and were all proven to

lack RabGAP activity (Table S2). Among these, USP6/

TRE17 and TBC1D3 have been shown to interact with

the small GTPase ADP ribosylation factor 6 (ARF6 [MIM

600464]).13,14 ARF6 is implicated in the regulation of

membrane trafficking between the plasma membrane

and the endocytic compartment through the activation
The American
of the lipid-modifying enzymes phospholipase D and

phosphotidyl-inositol-4-phosphate 5-kinase.15

We therefore investigated the possible interaction

between TBC1D24 and ARF6 in COS7 cells (ATCC number

CRL-1651) overexpressing GFP-tagged TBC1D24 and HA-

tagged ARF6, in either its wild-type (WT), GDP-locked

(T27N), or GTP-locked (Q67L) form.16 When transiently

overexpressed in COS-7 cells and analyzed 36 hours

after transfection, GFP-TBC1D24 showed a predominant

cytoplasmatic localization (Figure 3A) and was partially

expressed at the plasma membrane where it colocalized

with coexpressed ARF6-HA (Figure 3B). For coimmunopre-

cipitation experiments, COS-7 cells were cotransfected

with GFP-TBC1D24 and ARF6-HA and lysed 36 hr after

transfection (lysis buffer: 50 mM Tris [pH 7.5], 150 mM
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Figure 3. TBC1D24 Is an ARF6-Interacting Protein
(A) Representative image of a COS-7 cell transfected with GFP-TBC1D24 and visualized 36 hr after transfection.
(B) Representative images of a COS-7 cell cotransfected with GFP-TBC1D24 and ARF6-HA and visualized 36 hr after transfection. HA
immunoreactivity was detected by HA antibody and Alexa546 conjugated secondary antibodies. The arrow in the merge panel shows
colocalization of overexpressed ARF6 and TBC1D24 at the plasma membrane.
Scale bars represent 20 mm.
(C) TBC1D24-WT, D147H, and A509V were cotransfected with HA-tagged wild-type (WT), T27N, or Q67L ARF6 in COS-7 cells and
immunoprecipitated (IP) with GFP antibody. Associated ARF6 (coIP) was detected by HA antibody (aHA) in retrospective western blot-
ting (WB). Wcl, whole cell lysate.
NaCl, 0.1% sodium dodecyl sulfate, 1% Nonidet P40,

0.2 mM phenylmethylsulfonyl fluoride, 2 mg/ml pepstatin,

and 1 mg/ml leupeptin). GFP-TBC1D24 or ARF6-HA were

immunoprecipitated with anti-GFP or anti-HA polyclonal

antibodies (Invitrogen), respectively, and interacting

ARF6 or TBC1D24 were detected by retrospective immuno-

blotting with anti-HA or anti-GFP monoclonal antibodies

(Millipore). ARF-6 coimmunoprecipitated with TBC1D24

(Figure 3C) as well as TBC1D24 coimmunoprecipitated

with ARF6 (Figure S2). The intensity of the coimmunopre-

cipitated band increased in the presence of T27N-ARF6 and

decreased in the presence of Q67L-ARF6, suggesting

a GDP-dependent interaction (Figure 3C). When express-

ing TBC1D24 mutant forms, the interaction with ARF6

was significantly impaired by the D147H mutation and

preserved in the A509Vmutant (Figure 3C). These findings

suggest an involvement of the TBC domain in the interac-

tion with ARF6, as described for USP6,13 and reveal an

essential role of the aspartic acid 147 in mediating

TBC1D24-ARF6 interaction (Figure 3C).

The main function of ARF6 in the nervous system is the

regulation of dendritic branching, spine formation, and

axonal extension.17 To investigate the effect of TBC1D24

and FIME mutations in neuritogenesis, GFP-tagged wild-

type and mutant forms of TBC1D24 were transiently

expressed in primary cortical neurons prepared from

C57Bl6J mouse embryos as previously described18 and

neurite outgrowth and arborization were evaluated. Neu-

rons were plated at low density (100 cells/mm2), trans-

fected after 7 days in vitro (DIV) with lipofectamine trans-

fection reagent (Invitrogen), and analyzed at 9 DIV. For
368 The American Journal of Human Genetics 87, 365–370, Septemb
analysis, neurons were fixed in 4% PFA, 4% sucrose in

PBS and decorated with MAP2 antibody (Millipore) fol-

lowed by Alexa 594 secondary antibody to distinguish

dendrites from axons. For quantitative analysis of total

neurite length, neurites were traced and their total length

wasmeasured. The analysis of neurite arborization was per-

formed on 33 (GFP), 70 (WT), 43 (D147H), and 33 (A509V)

neurons from three independent preparations via the

Sholl analysis.19 Concentric circles with radii increasing

at regular steps of 10 mm were centered to the cell body

and the number of intersections was automatically evalu-

ated with the Image J Sholl analysis plug-in. TBC1D24

overexpression resulted in a marked increase in neurite

length and arborization compared to control, and the

effect was evident at the level of both axonal and den-

dritic compartments (Figures 4A–4D). As the inactive

ARF6 mutant (T27N) was shown to increase dendritic

branching20 and axonal elongation,21 our results are

consistent with a negative modulation of ARF6 function

by TBC1D24. The FIME mutations significantly reverted

this phenotype indicating a partial (D147H) or complete

(A509V) loss of function (Figures 4A–4D). Notably, A509V

mutation in the TLDc domain severely affected the ARF6-

dependent TBC1D24 function. The TLDc domain is highly

conserved through evolution from yeast to man, suggest-

ing a key biological function. In mammals this domain is

shared by genes involved in the response to oxidative

stress, such as OXR1 and Ncoa7b, but its specific role has

not been yet assessed.9

The identification of TBC1D24 mutations in patients

with epilepsy provides evidence of the involvement of
er 10, 2010



Figure 4. Functional Analysis of WT and Mutant
TBC1D24
(A) Representative images of mouse cortical neurons trans-
fected at 6 DIV with either GFP, GFP-TBC1D24-wt (WT),
GFP-TBC1D24-D147H (D147H), or GFP-TBC1D24-A509V
(A509V) and visualized 36 hr after transfection. Scale bar
represents 50 mm.
(B and C) Overexpression of TBC1D24 provoked a massive
increase in neurite length (B) and branching (C), whereas
overexpression of its epileptogenic mutants (i.e., D147H
and A509V) reverted this phenotype.
(D) Quantitative analysis of neurite (total), dendrite, or
axon length in 33 cells for each genotype. Dendrites
and axons were distinguished by MAP2 labeling and/or
morphology. Data expressed as means 5 SEM and com-
pared via one-way analysis of variance (ANOVA, B and C)
or repeated-measures ANOVA (D) followed by the Bonferro-
ni’s multiple comparison test. ***p < 0.0001, **p < 0.001
versus GFP; ���p < 0.0001, ��p < 0.001, �p < 0.01 versus
GFP-TBC1D24-wt.
the ARF6-dependent molecular pathway in the generation

of brain hyperexcitability and seizures. ARF6 has been

shown to participate in several processes of neuronal

development and plasticity by regulating axonal elonga-

tion and branching,20 dendrite arborization,21 and exo-

endocytic cycling of synaptic vesicles.22 In addition, recent

evidence points out a role for ARF6 in spine maturation

and stability23 and in the control of AMPA receptor inter-

nalization during long-term depression,24 both processes

implicated in the modulation of brain excitability.

The identification of TBC1D24 mutations in epileptic

patients together with its predominant expression in crit-

ical epileptogenic brain areas also highlights a fundamental

role of this protein in the regulation of neuronal network

excitability. Moreover, the evidence that epileptogenic

mutations affected neurite outgrowth and arborization

suggests a critical role of TBC1D24 in developmentally

regulated events essential for the morphological and func-

tional maturation of neuronal circuitry. The increasing

expression of TBC1D24 during embryogenesis in the

cortex further strengthens this hypothesis.

Compelling evidence indicates that morpho-functional

changes underlie epileptogenesis in different epileptic

disorders with congenital or acquired gross structural brain

abnormalities, such as defects in neuronal migration

(e.g., lissencephaly or epileptic heterotopias), proliferation

(e.g., tuberous sclerosis), and degeneration (e.g., progres-

sive myoclonus epilepsies).25

However, recent data highlight the role of develop-

mental dynamics also in idiopathic epilepsy and dis-

close novel mechanisms underlying brain hyperexcit-

ability. LGI1,4 mutated in the autosomal-dominant
The American Journal
lateral temporal lobe epilepsy, regulates the func-

tional maturation and structural pruning of gluta-

matergic synapses during postnatal development,

and its impairment markedly increases excitatory

synaptic trasmission. EFHC1,5 which is involved in

juvenile myoclonic epilepsy, one of the most
frequent forms of idiopathic generalized epilepsy, interacts

with microtubules to regulate cell division and cortical

development and its loss disrupts radial migration of

projection neurons in the developing rat neocortex.

In this study, we identified TBC1D24 as a gene involved

in autosomal-recessive idiopathic epilepsy and showed

that its protein product is a binding partner of ARF6

involved in neurite outgrowth. We unveiled the involve-

ment of ARF6-dependent molecular pathway in brain

hyperexcitability and seizures and confirmed the emerging

role of subtle cytoarchitectural alterations in the etiology

of this group of common epileptic disorders.
Supplemental Data

Supplemental Data include two figures and two tables can be

found with this article online at http://www.cell.com/AJHG/.
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